





B. Vandecasteele<sup>1\*</sup>, F. Amery<sup>1</sup>, J. Viaene<sup>1</sup>, A. Lataf<sup>2</sup>, D. Vandamme<sup>2</sup>, M. Jozefczak<sup>2</sup>, A. Cuypers<sup>2</sup>

<sup>1</sup>Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium, <u>bart.vandecasteele@ilvo.vlaanderen.be</u> <sup>2</sup>Hasselt University, Centre for Environmental Sciences (CMK), Agoralaan Building D, Diepenbeek, Belgium

in an economically valuable and sustainable end (2019-2022): Produce biochar from organic residues resulting A policy and business product for support tool will be created with intelligent matches between input material(s), production parameters and biochar application (Fig. 1 & 2).



Fig. 2: Biochar can be used to optimize manure processing while manure is also a feedstock for biochar production

Biochars are selected based on a fast screening of their effect on  $H_2S$ ,  $NH_4^+$ -N and  $NH_3$ -N adsorption. A feedback loop is also included, where knowledge on important biochar characteristics is used for optimising biochar production.

## WP1: BIOCHAR PRODUCTION

Focus on

- Input materials





- $CO_2$  sorption •
- $NH_4^+$  and  $NH_3$  sorption •
- $NH_{3}$ ,  $H_{2}S$  and greenhouse gas emissions
- Cation exchange capacity (CEC) determination  $\bullet$
- **Buffering capacity**  $\bullet$
- Stability, maturity, biochemical composition •
- Change in biochar properties during processing (litter bags) ullet

Fig. 3: Aim of WP2 – Investigate biochar's mode of action in processes and end products' added agricultural value



